{ "id": "2505.03381", "version": "v1", "published": "2025-05-06T10:00:18.000Z", "updated": "2025-05-06T10:00:18.000Z", "title": "On the continuity of solutions to the anisotropic $N$-Laplacian with $L^1$ lower order term", "authors": [ "Mariia Savchenko", "Igor Skrypnik", "Yevgeniia Yevgenieva" ], "categories": [ "math.AP" ], "abstract": "We establish the continuity of bounded solutions to the anisotropic elliptic equation $$-\\sum\\limits_{i=1}^N\\Big(|u_{x_i}|^{p_i-2} u_{x_i}\\Big)_{x_i}=f(x),\\quad x\\in \\Omega,\\quad f(x)\\in L^1(\\Omega)$$ under the conditions $$\\min\\limits_{1\\leqslant i\\leqslant N} p_i >1,\\quad \\sum\\limits_{i=1}^N \\frac{1}{p_i}=1$$ and $$\\lim\\limits_{\\rho\\rightarrow 0}\\,\\sup\\limits_{x\\in \\Omega}\\int\\limits^{\\rho}_0\\Big(\\int\\limits_{B_r(x)}|f(y)|\\,dy\\Big)^{\\frac{1}{N-1}}\\frac{dr}{r}=0.$$ In the standard case $p_1=...=p_N=N$, these conditions recover the known results for the $N$-Laplacian.", "revisions": [ { "version": "v1", "updated": "2025-05-06T10:00:18.000Z" } ], "analyses": { "subjects": [ "35B65", "35D30", "35J92" ], "keywords": [ "lower order term", "continuity", "anisotropic elliptic equation", "conditions", "standard case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }