{ "id": "2505.01716", "version": "v1", "published": "2025-05-03T06:59:21.000Z", "updated": "2025-05-03T06:59:21.000Z", "title": "Variation of Tannaka groups of perverse sheaves in family", "authors": [ "Anna Cadoret", "Haohao Liu" ], "comment": "Comments are welcome!", "categories": [ "math.AG", "math.NT" ], "abstract": "Let $k$ be a field of characteristic $0$, let $S$ be a smooth, geometrically connected variety over $k$, with generic point $\\eta$, and $f:\\mathbb{X}\\rightarrow S$ a morphism separated and of finite type. Fix a prime $\\ell$. Let $\\mathbb{P}$ be an $f$-universally locally acyclic relative perverse $\\overline{\\mathbb{Q}}_\\ell$-sheaf on $\\mathbb{X}/S$. We prove that if for some (equivalently, every) geometric point $\\bar \\eta$ over $\\eta$ the restriction $\\mathbb{P}|_{\\mathbb{X}_{\\bar \\eta}}$ is simple as a perverse $\\overline{\\mathbb{Q}}_\\ell$-sheaf on $\\mathbb{X}_{\\bar \\eta}$, then there is a non-empty open subscheme $U\\subset S$ such that, for every geometric point $\\bar s$ on $U$, the restriction $\\mathbb{P}|_{\\mathbb{X}_{\\bar s}}$ is simple as a perverse $\\overline{\\mathbb{Q}}_\\ell$-sheaf on $\\mathbb{X}_{\\bar s}$. When $f:\\mathbb{X}\\rightarrow S$ is an abelian scheme, we give applications of this result to the variation with $s\\in S$ of the Tannaka group of $\\mathbb{P}|_{\\mathbb{X}_{\\bar s}}$.", "revisions": [ { "version": "v1", "updated": "2025-05-03T06:59:21.000Z" } ], "analyses": { "keywords": [ "tannaka group", "perverse sheaves", "geometric point", "non-empty open subscheme", "restriction" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }