{ "id": "2504.19939", "version": "v2", "published": "2025-04-28T16:09:42.000Z", "updated": "2025-05-08T17:24:33.000Z", "title": "Stability inequalities with explicit constants for a family of reverse Sobolev inequalities on the sphere", "authors": [ "Tobias König" ], "comment": "20 pages. Version 2: introduction slightly rewritten, statement of Proposition 3.1 corrected", "categories": [ "math.AP" ], "abstract": "We prove a stability inequality associated to the reverse Sobolev inequality on the sphere $\\mathbb S^n$, for the full admissible parameter range $s - \\frac{n}{2} \\in (0,1) \\cup (1,2)$. To implement the classical proof of Bianchi and Egnell, we overcome the main difficulty that the underlying operator $A_{2s}$ is not positive definite. As a consequence of our analysis and recent results from Gong et al. (arXiv:2503.20350 [math.AP]), the case $s - \\frac{n}{2} \\in (1,2)$ remarkably constitutes the first example of a Sobolev-type stability inequality (i) whose best constant is explicit and (ii) which does not admit an optimizer.", "revisions": [ { "version": "v2", "updated": "2025-05-08T17:24:33.000Z" } ], "analyses": { "keywords": [ "reverse sobolev inequality", "explicit constants", "full admissible parameter range", "sobolev-type stability inequality", "main difficulty" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }