{ "id": "2502.09493", "version": "v1", "published": "2025-02-13T16:59:36.000Z", "updated": "2025-02-13T16:59:36.000Z", "title": "Quantitative estimates for high-contrast random media", "authors": [ "Peter Bella", "Matteo Capoferri", "Mikhail Cherdantsev", "Igor Velčić" ], "comment": "42 pages", "categories": [ "math.AP", "math-ph", "math.MP", "math.PR" ], "abstract": "This paper studies quantitative homogenization of elliptic equations with random, uniformly elliptic coefficients that vanish in a union of random holes. Assuming an upper bound on the size of the holes and a separation condition between them, we derive optimal bounds for the regularity radius $r_*$ and suboptimal growth estimates for the corrector. These results are key ingredients for error analysis in stochastic homogenization and serve as crucial input for recent developments in the double-porosity model, such as those by Bonhomme, Duerinckx, and Gloria (https://arxiv.org/abs/2502.02847).", "revisions": [ { "version": "v1", "updated": "2025-02-13T16:59:36.000Z" } ], "analyses": { "subjects": [ "35J70", "60H25", "35B27", "35B40", "74A40", "74Q05" ], "keywords": [ "high-contrast random media", "quantitative estimates", "paper studies quantitative homogenization", "suboptimal growth estimates", "elliptic equations" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable" } } }