{ "id": "2502.09300", "version": "v1", "published": "2025-02-13T13:14:07.000Z", "updated": "2025-02-13T13:14:07.000Z", "title": "Optimal response for stochastic differential equations by local kernel perturbations", "authors": [ "Gianmarco del Sarto", "Stefano Galatolo", "Sakshi Jain" ], "categories": [ "math.DS", "math.OC" ], "abstract": "We consider a random dynamical system on $\\mathbb{R}^d$, whose dynamics is defined by a stochastic differential equation. The annealed transfer operator associated with such systems is a kernel operator. Given a set of feasible infinitesimal perturbations $P$ to this kernel, with support in a certain compact set, and a specified observable function $\\phi: \\mathbb{R}^d \\to \\mathbb{R}$, we study which infinitesimal perturbation in $P$ produces the greatest change in expectation of $\\phi$. We establish conditions under which the optimal perturbation uniquely exists and present a numerical method to approximate the optimal infinitesimal kernel perturbation. Finally, we numerically illustrate our findings with concrete examples.", "revisions": [ { "version": "v1", "updated": "2025-02-13T13:14:07.000Z" } ], "analyses": { "subjects": [ "37H05", "37H30", "47B34", "82C31", "93E03" ], "keywords": [ "stochastic differential equation", "local kernel perturbations", "optimal response", "optimal infinitesimal kernel perturbation", "infinitesimal perturbation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }