{ "id": "2502.08315", "version": "v1", "published": "2025-02-12T11:31:51.000Z", "updated": "2025-02-12T11:31:51.000Z", "title": "Shadowing for Infinite Dimensional Dynamical Systems", "authors": [ "José M. Arrieta", "Alexandre N. Carvalho", "Carlos R. Takaessu Jr" ], "categories": [ "math.DS", "math.AP" ], "abstract": "In this paper we extend some results about Shadowing Lemma there are known on finite dimensional compact manifolds without border and $\\mathbb{R}^n$, to an infinite dimensional space. In fact, we prove that if $\\{\\mathcal{T}(t):t\\ge 0\\}$ is a Morse-Smale semigroup defined in a Hilbert space with global attractor $\\mathcal{A}$, then $\\mathcal{T}(1)|_{\\mathcal{A}}:\\mathcal{A}\\to \\mathcal{A} $ admits the Lipschitz Shadowing property. Moreover, for any positively invariant bounded neighborhood $\\mathcal{U}\\supset\\mathcal{A}$ of the global attractor, the map $\\mathcal{T}(1)|_{\\mathcal{U}}:\\mathcal{U}\\to \\mathcal{U}$ has the H\\\"{o}lder-Shadowing property. As applications, we obtain new results related to the structural stability of Morse-Smale semigroups defined in Hilbert spaces and continuity of global attractors.", "revisions": [ { "version": "v1", "updated": "2025-02-12T11:31:51.000Z" } ], "analyses": { "keywords": [ "infinite dimensional dynamical systems", "global attractor", "hilbert space", "morse-smale semigroup", "finite dimensional compact manifolds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }