{ "id": "2502.06983", "version": "v1", "published": "2025-02-10T19:22:25.000Z", "updated": "2025-02-10T19:22:25.000Z", "title": "Riemann-Skorohod and Stratonovich integrals for Gaussian processes", "authors": [ "Yanghui Liu" ], "comment": "25", "categories": [ "math.PR" ], "abstract": "In this paper we consider Skorohod and Stratonovich-type integrals in a general setting of Gaussian processes. We show that a conversion formula holds when the covariance functions of the Gaussian process are of finite $\\rho$-variation for $\\rho\\geq 1$ and that the diagonals of covariance functions are of finite $\\rho'$-variation for $\\rho'\\geq 1$ such that $\\frac{1}{\\rho'}+\\frac{1}{2\\rho}>1$. The difference between the two types of integrals is identified with a Young integral. We also show that the Skorohod integral is the limit of a $[\\rho]$-th order Skorohod-Riemann sum.", "revisions": [ { "version": "v1", "updated": "2025-02-10T19:22:25.000Z" } ], "analyses": { "subjects": [ "60H07", "60L20" ], "keywords": [ "gaussian process", "stratonovich integrals", "riemann-skorohod", "covariance functions", "th order skorohod-riemann sum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }