{ "id": "2502.05991", "version": "v1", "published": "2025-02-09T18:46:52.000Z", "updated": "2025-02-09T18:46:52.000Z", "title": "Non-decomposable quadratic forms over totally real number fields", "authors": [ "Magdaléna Tinková", "Pavlo Yatsyna" ], "comment": "37 pages; comments are welcome!", "categories": [ "math.NT" ], "abstract": "We give an upper bound for the norm of the determinant of non-decomposable totally positive quadratic forms defined over the ring of integers of totally real number fields. We apply these results to find the lower and upper bounds for the minimal ranks of $n$-universal quadratic forms. For $\\mathbb{Q}(\\sqrt{2}),\\mathbb{Q}(\\sqrt{3}),\\mathbb{Q}(\\sqrt{5})$, $\\mathbb{Q}(\\sqrt{6})$, and $\\mathbb{Q}(\\sqrt{21})$, we classify up to equivalence all the classical, non-decomposable binary quadratic forms", "revisions": [ { "version": "v1", "updated": "2025-02-09T18:46:52.000Z" } ], "analyses": { "keywords": [ "totally real number fields", "non-decomposable quadratic forms", "upper bound", "universal quadratic forms", "non-decomposable binary quadratic forms" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }