{ "id": "2502.03562", "version": "v1", "published": "2025-02-05T19:18:16.000Z", "updated": "2025-02-05T19:18:16.000Z", "title": "Multiplicativity of Fourier Coefficients of Maass Forms for SL($n,\\mathbb Z$)", "authors": [ "Dorian Goldfeld", "Eric Stade", "Michael Woodbury" ], "categories": [ "math.NT" ], "abstract": "The Fourier coefficients of a Maass form $\\phi$ for SL$(n,\\mathbb Z)$ are complex numbers $A_\\phi(M)$, where $M=(m_1,m_2,\\ldots,m_{n-1})$ and $m_1,m_2,\\ldots ,m_{n-1}$ are nonzero integers. It is well known that coefficients of the form $A_\\phi(m_1,1,\\ldots,1)$ are eigenvalues of the Hecke algebra and are multiplicative. We prove that the more general Fourier coefficients $A_\\phi(m_1,\\ldots,m_{n-1})$ are also eigenvalues of the Hecke algebra and satisfy the multiplicativity relations $$A_\\phi\\big(m_1m_1',\\;m_2m_2', \\;\\ldots\\; m_{n-1}m_{n-1}'\\big) = A_\\phi\\big(m_1,m_2,\\ldots,m_{n-1})\\cdot A_\\phi(m_1',m_2',\\ldots,m_{n-1}'\\big)$$ provided the products $\\prod\\limits_{i=1}^{n-1} m_i$ and $\\prod\\limits_{i=1}^{n-1} m_i'$ are relatively prime to each other.", "revisions": [ { "version": "v1", "updated": "2025-02-05T19:18:16.000Z" } ], "analyses": { "subjects": [ "11F55", "11F72" ], "keywords": [ "maass form", "hecke algebra", "general fourier coefficients", "eigenvalues", "multiplicativity relations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }