{ "id": "2502.03355", "version": "v1", "published": "2025-02-05T16:51:59.000Z", "updated": "2025-02-05T16:51:59.000Z", "title": "Solutions to general elliptic equations on nearly geodesically convex domains with many critical points", "authors": [ "Alberto Enciso", "Francesca Gladiali", "Massimo Grossi" ], "categories": [ "math.AP" ], "abstract": "Consider a complete $d$-dimensional Riemannian manifold $(\\mathcal M,g)$, a point $p\\in\\mathcal M$ and a nonlinearity $f(q,u)$ with $f(p,0)>0$. We prove that for any odd integer $N\\ge3$, there exists a sequence of smooth domains $\\Omega_k\\subset\\mathcal M$ containing $p$ and corresponding positive solutions $u_k:\\Omega_k\\to\\R^+$ to the Dirichlet boundary problem", "revisions": [ { "version": "v1", "updated": "2025-02-05T16:51:59.000Z" } ], "analyses": { "keywords": [ "general elliptic equations", "geodesically convex domains", "critical points", "dirichlet boundary problem", "dimensional riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }