{ "id": "2502.03259", "version": "v1", "published": "2025-02-05T15:16:36.000Z", "updated": "2025-02-05T15:16:36.000Z", "title": "Nonnegative Ricci Curvature, Euclidean Volume Growth, and the Fundamental Groups of Open $4$-Manifolds", "authors": [ "Hongzhi Huang", "Xian-Tao Huang" ], "categories": [ "math.DG" ], "abstract": "Let $M$ be a 4-dimensional open manifold with nonnegative Ricci curvature. In this paper, we prove that if the universal cover of $M$ has Euclidean volume growth, then the fundamental group $\\pi_1(M)$ is finitely generated. This result confirms Pan-Rong's conjecture \\cite{PR18} for dimension $n = 4$. Additionally, we prove that there exists a universal constant $C>0$ such that $\\pi_1(M)$ contains an abelian subgroup of index $\\le C$. More specifically, if $\\pi_1(M)$ is infinite, then $\\pi_1(M)$ is a crystallographic group of rank $\\le 3$. If $\\pi_1(M)$ is finite, then $\\pi_1(M)$ is isomorphic to a quotient of the fundamental group of a spherical 3-manifold.", "revisions": [ { "version": "v1", "updated": "2025-02-05T15:16:36.000Z" } ], "analyses": { "keywords": [ "euclidean volume growth", "nonnegative ricci curvature", "fundamental group", "result confirms pan-rongs conjecture", "open manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }