{ "id": "2502.03154", "version": "v1", "published": "2025-02-05T13:24:21.000Z", "updated": "2025-02-05T13:24:21.000Z", "title": "Infinite products with algebraic numbers", "authors": [ "Simon Kristensen", "Mathias Løkkegaard Laursen" ], "categories": [ "math.NT" ], "abstract": "We obtain general criteria for giving a lower bound on the degree of numbers of the form $\\prod_{n=1}^\\infty \\left(1+\\frac{b_n}{\\alpha_n}\\right)$ or of the form $\\prod_{m=1}^\\infty \\left(1+ \\sum_{n=1}^\\infty \\frac{b_{n,m}}{\\alpha_{n,m}}\\right)$, where the $\\alpha_n$ and $\\alpha_{n,m}$ are assumed to be algebraic integers, and the $b_n$ and $b_{n,m}$ are natural numbers. In each case, we give a lower bound of the degree over the smallest extension of $\\mathbb{Q}$ containing all algebraic numbers in the expression. The criteria obtained depend on growth conditions on the involved quantities.", "revisions": [ { "version": "v1", "updated": "2025-02-05T13:24:21.000Z" } ], "analyses": { "subjects": [ "11J72", "11J81" ], "keywords": [ "algebraic numbers", "infinite products", "lower bound", "general criteria", "growth conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }