{ "id": "2502.02778", "version": "v1", "published": "2025-02-04T23:41:13.000Z", "updated": "2025-02-04T23:41:13.000Z", "title": "The hyperspace ω(f) when f is a transitive dendrite mapping", "authors": [ "Jorge M. Martínez-Montejano", "Héctor Méndez", "Yajaida N. Velázquez-Inzunza" ], "categories": [ "math.GN", "math.DS" ], "abstract": "Let $X$ be a compact metric space. By $2^X$ we denote the hyperspace of all closed and non-empty subsets of $X$ endowed with the Hausdorff metric. Let $f:X\\to X$ be a continuous function. In this paper we study some topological properties of the hyperspace $\\omega(f)$, the collection of all omega limits sets $\\omega(x,f)$ with $x\\in X$. We prove the following: $i)$ If $X$ has no isolated points, then, for every continuous function $f:X\\to X$, $int_{2^X}(\\omega(f))=\\emptyset$. $ii)$ If $X$ is a dendrite for which every arc contains a free arc and $f:X\\to X$ is transitive, then the hyperspace $\\omega(f)$ is totally disconnected. $iii)$ Let $D_\\infty$ be the Wazewski's universal dendrite. Then there exists a transitive continuous function $f:D_\\infty\\to D_\\infty$ for which the hyperspace $\\omega(f)$ contains an arc; hence, $\\omega(f)$ is not totally disconnected.", "revisions": [ { "version": "v1", "updated": "2025-02-04T23:41:13.000Z" } ], "analyses": { "keywords": [ "transitive dendrite mapping", "hyperspace", "continuous function", "omega limits sets", "wazewskis universal dendrite" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }