{ "id": "2502.01095", "version": "v1", "published": "2025-02-03T06:34:37.000Z", "updated": "2025-02-03T06:34:37.000Z", "title": "On subordinated semigroups and Hardy spaces associated to fractional powers of operators", "authors": [ "The Anh Bui", "Michael G. Cowling", "Xuan Thinh Duong" ], "comment": "20 pages", "categories": [ "math.FA" ], "abstract": "Let $L$ be a positive self-adjoint operator on $L^2(X)$, where $X$ is a $\\sigma$-finite metric measure space. When $\\alpha \\in (0,1)$, the subordinated semigroup $\\{\\exp(-tL^{\\alpha}):t \\in \\mathbb{R}^+\\}$ can be defined on $L^2(X)$ and extended to $L^p(X)$. We prove various results about the semigroup $\\{\\exp(-tL^{\\alpha}):t \\in \\mathbb{R}^+\\}$, under different assumptions on $L$. These include the weak type $(1,1)$ boundedness of the maximal operator $f \\mapsto \\sup _{t\\in \\mathbb{R}^+}\\exp(-tL^{\\alpha})f$ and characterisations of Hardy spaces associated to the operator $L$ by the area integral and vertical square function.", "revisions": [ { "version": "v1", "updated": "2025-02-03T06:34:37.000Z" } ], "analyses": { "subjects": [ "42B30", "42B35" ], "keywords": [ "hardy spaces", "subordinated semigroup", "fractional powers", "finite metric measure space", "positive self-adjoint operator" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }