{ "id": "2501.18744", "version": "v1", "published": "2025-01-30T20:49:13.000Z", "updated": "2025-01-30T20:49:13.000Z", "title": "On the $q$-factorization of power series", "authors": [ "Robert Schneider", "Andrew V. Sills", "Hunter Waldron" ], "comment": "9 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "Any power series with unit constant term can be factored into an infinite product of the form $\\prod_{n\\geq 1} (1-q^n)^{-a_n}$. We give direct formulas for the exponents $a_n$ in terms of the coefficients of the power series, and vice versa, as sums over partitions. As examples, we prove identities for certain partition enumeration functions. Finally, we note $q$-analogues of our enumeration formulas.", "revisions": [ { "version": "v1", "updated": "2025-01-30T20:49:13.000Z" } ], "analyses": { "subjects": [ "30B10", "11P81", "40A20" ], "keywords": [ "power series", "factorization", "unit constant term", "partition enumeration functions", "enumeration formulas" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }