{ "id": "2501.17440", "version": "v1", "published": "2025-01-29T06:41:41.000Z", "updated": "2025-01-29T06:41:41.000Z", "title": "Heat kernel estimates for Schrödinger operators with supercritical killing potentials", "authors": [ "Soobin Cho", "Panki Kim", "Renming Song" ], "comment": "57 page", "categories": [ "math.PR", "math.AP" ], "abstract": "In this paper, we study the Schr\\\"odinger operator $\\Delta-V$, where $V$ is a supercritical non-negative potential belonging to a large class of functions containing functions of the form $b|x|^{-(2+2\\beta)}$, $b, \\beta>0$. We obtain two-sided estimates on the heat kernel $p(t, x, y)$ of $\\Delta-V$, along with estimates for the corresponding Green function. Unlike the case of the fractional Schr\\\"odinger operator $-(-\\Delta)^{\\alpha/2}-V$, $\\alpha\\in (0, 2)$, with supercritical killing potential dealt with in [11], in the present case, the heat kernel $p(t, x, y)$ decays to 0 exponentially as $x$ or $y$ tends to the origin.", "revisions": [ { "version": "v1", "updated": "2025-01-29T06:41:41.000Z" } ], "analyses": { "subjects": [ "47D08", "60J35", "60J65", "35K08" ], "keywords": [ "heat kernel estimates", "schrödinger operators", "functions containing functions", "large class", "supercritical killing potential dealt" ], "note": { "typesetting": "TeX", "pages": 57, "language": "en", "license": "arXiv", "status": "editable" } } }