{ "id": "2501.17136", "version": "v2", "published": "2025-01-28T18:34:55.000Z", "updated": "2025-02-04T18:27:54.000Z", "title": "On Monochromatic Solutions of Linear Equations Using At Least Three Colors", "authors": [ "Laurence P. Wijaya" ], "categories": [ "math.CO", "math.NT" ], "abstract": "We study the number of monochromatic solution to linear equation in $\\{1,\\dots,n\\}$ when we color the set by at least three colors. We consider the $r$-commonness for $r\\geq 3$ of linear equation with odd number of terms, and we also prove that any $2$-uncommon equation is $r$-uncommon for any $r\\geq 3$.", "revisions": [ { "version": "v2", "updated": "2025-02-04T18:27:54.000Z" } ], "analyses": { "subjects": [ "05D10", "05E16", "11B75" ], "keywords": [ "linear equation", "monochromatic solution", "odd number", "uncommon equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }