{ "id": "2501.14255", "version": "v1", "published": "2025-01-24T05:39:26.000Z", "updated": "2025-01-24T05:39:26.000Z", "title": "Hitting probabilities, thermal capacity, and Hausdorff dimension results for the Brownian sheet", "authors": [ "Cheuk Yin Lee", "Yimin Xiao" ], "categories": [ "math.PR" ], "abstract": "Let $W= \\{W(t): t \\in \\mathbb{R}_+^N \\}$ be an $(N, d)$-Brownian sheet and let $E \\subset (0, \\infty)^N$ and $F \\subset \\mathbb{R}^d$ be compact sets. We prove a necessary and sufficient condition for $W(E)$ to intersect $F$ with positive probability and determine the essential supremum of the Hausdorff dimension of the intersection set $W(E)\\cap F$ in terms of the thermal capacity of $E \\times F$. This extends the previous results of Khoshnevisan and Xiao (2015) for the Brownian motion and Khoshnevisan and Shi (1999) for the Brownian sheet in the special case when $E \\subset (0, \\infty)^N$ is an interval.", "revisions": [ { "version": "v1", "updated": "2025-01-24T05:39:26.000Z" } ], "analyses": { "keywords": [ "brownian sheet", "hausdorff dimension results", "thermal capacity", "hitting probabilities", "probability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }