{ "id": "2501.11912", "version": "v2", "published": "2025-01-21T06:23:51.000Z", "updated": "2025-01-22T21:10:55.000Z", "title": "Detecting Free Products in the Mapping Class Group of Punctured Disks via Dynnikov Coordinates", "authors": [ "Elif Medetoğulları", "Elif Dalyan", "S. Öykü Yurttaş" ], "comment": "Mistake in the proof", "categories": [ "math.GT" ], "abstract": "We prove that Dehn twists about certain $k$ curves on an $n$-punctured disk generate either a free group of rank $k$ or a free product of Abelian groups, depending on the configuration of the curves. Our approach refines previously known criteria, providing a different method for detecting freeness in the mapping class group of the punctured disk. Using Dynnikov coordinates, we further present an algorithm that checks whether Dehn twists about these $k$ curves generate a free group or a free product of Abelian groups.", "revisions": [ { "version": "v2", "updated": "2025-01-22T21:10:55.000Z" } ], "analyses": { "subjects": [ "57M50", "57M60" ], "keywords": [ "mapping class group", "detecting free products", "dynnikov coordinates", "dehn twists", "abelian groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }