{ "id": "2501.11476", "version": "v1", "published": "2025-01-20T13:09:08.000Z", "updated": "2025-01-20T13:09:08.000Z", "title": "On recurrence sets for toral endomorphisms", "authors": [ "Zhangnan Hu", "Tomas Persson" ], "comment": "25 pages, 2 figures", "categories": [ "math.DS" ], "abstract": "Let $A$ be a $2\\times 2$ integral matrix with an eigenvalue of modulus strictly less than 1. Let $T$ be the natural endomorphism on the torus $\\mathbb{T}^2=\\mathbb{R}^2/\\mathbb{Z}^2$, induced by $A$. Given $\\tau>0$, let \\[ R_\\tau =\\{\\, x\\in \\mathbb{T}^2 : T^nx\\in B(x,e^{-n\\tau})~\\mathrm{infinitely ~many}~n\\in\\mathbb{N} \\,\\}. \\] We calculated the Hausdorff dimension of $R_\\tau$, and also prove that $R_\\tau$ has a large intersection property.", "revisions": [ { "version": "v1", "updated": "2025-01-20T13:09:08.000Z" } ], "analyses": { "subjects": [ "37C45", "37D20", "28A80" ], "keywords": [ "toral endomorphisms", "recurrence sets", "large intersection property", "natural endomorphism", "hausdorff dimension" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }