{ "id": "2501.10723", "version": "v1", "published": "2025-01-18T10:46:38.000Z", "updated": "2025-01-18T10:46:38.000Z", "title": "Cyclic $m$-DCI-groups and $m$-CI-groups", "authors": [ "István Kovács", "Luka Šinkovec" ], "categories": [ "math.CO" ], "abstract": "Based on the earlier work of Li (European J. Combin. 1997) and Dobson (Discrete Math. 2008), in this paper we complete the classification of cyclic $m$-DCI-groups and $m$-CI-groups. For a positive integer $m$ such that $m \\ge 3$, we show that the group $\\mathbb{Z}_n$ is an $m$-DCI-group if and only if $n$ is not divisible by $8$ nor by $p^2$ for any odd prime $p < m$. Furthermore, if $m \\ge 6$, then we show that $\\mathbb{Z}_n$ is an $m$-CI-group if and only if either $n \\in \\{ 8, 9, 18 \\}$, or $n \\notin \\{ 8, 9, 18 \\}$ and $n$ is not divisible by $8$ nor by $p^2$ for any odd prime $p < \\frac{m - 1}{2}$.", "revisions": [ { "version": "v1", "updated": "2025-01-18T10:46:38.000Z" } ], "analyses": { "subjects": [ "05C25", "20B25" ], "keywords": [ "odd prime", "discrete math", "earlier work", "classification", "positive integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }