{ "id": "2501.10584", "version": "v1", "published": "2025-01-17T22:27:59.000Z", "updated": "2025-01-17T22:27:59.000Z", "title": "On the dimension theory of Okamoto's function", "authors": [ "Balázs Bárány", "R. Dániel Prokaj" ], "categories": [ "math.DS" ], "abstract": "In this paper, we investigate the dimension theory of the one parameter family of Okamoto's function. We compute the Hausdorff, box-counting and Assouad dimensions of the graph for a typical choice of parameter. Furthermore, we study the dimension of the level sets. We give an upper bound on the dimension of every level set and we show that for a typical choice of parameters this value is attained for Lebesgue almost every level sets.", "revisions": [ { "version": "v1", "updated": "2025-01-17T22:27:59.000Z" } ], "analyses": { "subjects": [ "28A80", "37C45" ], "keywords": [ "dimension theory", "okamotos function", "level set", "typical choice", "assouad dimensions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }