{ "id": "2501.08060", "version": "v1", "published": "2025-01-14T12:13:46.000Z", "updated": "2025-01-14T12:13:46.000Z", "title": "Rough ideal convergence in a partial metric space", "authors": [ "Sukila Khatun", "Amar Kumar Banerjee", "Rahul Mondal" ], "comment": "10 pages", "categories": [ "math.GN" ], "abstract": "In this paper, using the concept of ideal, we study the idea of rough ideal convergence of sequences which is an extension of the notion of rough convergence of sequences in a partial metric space. We define the set of rough $\\mathcal{I}$-limit points and the set of rough $\\mathcal{I}$-cluster points and then we prove some relevant results associated with these sets.", "revisions": [ { "version": "v1", "updated": "2025-01-14T12:13:46.000Z" } ], "analyses": { "subjects": [ "40A05", "40G15" ], "keywords": [ "rough ideal convergence", "partial metric space", "rough convergence", "limit points", "cluster points" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }