{ "id": "2501.07613", "version": "v1", "published": "2025-01-13T09:08:37.000Z", "updated": "2025-01-13T09:08:37.000Z", "title": "A general form of Newton-Maclaurin type inequalities", "authors": [ "Changyu Ren" ], "categories": [ "math.CA" ], "abstract": "In this paper, we extend the classical Newton-Maclaurin inequalities to functions $S_{k;s}(x)=E_k(x)+\\dsum_{i=1}^s \\al_i E_{k-i}(x)$, which are formed by linear combinations of multiple basic symmetric mean. We proved that when the coefficients $\\al_1,\\al_2,\\cdots,\\al_s$ satisfy the condition that the polynomial $$t^s+\\al_1 t^{s-1}+\\al_2 t^{s-2}+\\cdots+\\al_s $$ has only real roots, the Newton-Maclaurin type inequalities hold for $S_{k;s}(x)$.", "revisions": [ { "version": "v1", "updated": "2025-01-13T09:08:37.000Z" } ], "analyses": { "keywords": [ "general form", "newton-maclaurin type inequalities hold", "multiple basic symmetric mean", "real roots", "linear combinations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }