{ "id": "2501.03925", "version": "v1", "published": "2025-01-07T16:37:16.000Z", "updated": "2025-01-07T16:37:16.000Z", "title": "Equidistribution of divergent geodesics in negative curvature", "authors": [ "Jouni Parkkonen", "Frédéric Paulin", "Rafael Sayous" ], "comment": "27 pages", "categories": [ "math.DS", "math.DG" ], "abstract": "In the unit tangent bundle of noncompact finite volume negatively curved Riemannian manifolds, we prove the equidistribution towards the measure of maximal entropy for the geodesic flow of the Lebesgue measure along the divergent geodesic flow orbits, as their complexity tends to infinity. We prove the analogous result for geometrically finite tree quotients, where the equidistribution takes place in the quotient space of geodesic lines towards the Bowen-Margulis measure.", "revisions": [ { "version": "v1", "updated": "2025-01-07T16:37:16.000Z" } ], "analyses": { "subjects": [ "37D40", "53C22", "20E08", "37D35", "37A25" ], "keywords": [ "negative curvature", "equidistribution", "divergent geodesic flow orbits", "volume negatively curved riemannian manifolds", "noncompact finite volume" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }