{ "id": "2501.03644", "version": "v1", "published": "2025-01-07T09:22:37.000Z", "updated": "2025-01-07T09:22:37.000Z", "title": "Finite length for unramified $\\mathrm{GL}_2$", "authors": [ "Christophe Breuil", "Florian Herzig", "Yongquan Hu", "Stefano Morra", "Benjamin Schraen" ], "categories": [ "math.NT", "math.RT" ], "abstract": "Let $p$ be a prime number and $K$ a finite unramified extension of $\\mathbb{Q}_p$. If $p$ is large enough with respect to $[K:\\mathbb{Q}_p]$ and under mild genericity assumptions, we prove that the admissible smooth representations of $\\mathrm{GL}_2(K)$ that occur in Hecke eigenspaces of the mod $p$ cohomology are of finite length. We also prove many new structural results about these representations of $\\mathrm{GL}_2(K)$ and their subquotients.", "revisions": [ { "version": "v1", "updated": "2025-01-07T09:22:37.000Z" } ], "analyses": { "keywords": [ "finite length", "mild genericity assumptions", "structural results", "prime number", "finite unramified extension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }