{ "id": "2501.03351", "version": "v1", "published": "2025-01-06T19:32:46.000Z", "updated": "2025-01-06T19:32:46.000Z", "title": "Strichartz's conjecture for the spinor bundle over the real hyperbolic space", "authors": [ "Abdelhamid Boussejra", "Khalid Koufany" ], "comment": "arXiv admin note: text overlap with arXiv:2406.00536", "categories": [ "math.RT", "math.DG" ], "abstract": "Let $H^n(\\mathbb R)$ denote the real hyperbolic space realized as the symmetric space $Spin_0(1,n)/Spin(n)$. In this paper, we provide a characterization for the image of the Poisson transform for $L^2$-sections of the spinor bundle over the boundary ${\\partial H}^n(\\mathbb R)$. As a consequence, we obtain an $L^2$ uniform estimate for the generalized spectral projections associated to the spinor bundle over $H^n(\\mathbb R)$, thereby extending Strichartz's conjecture from the scalar case to the spinor setting.", "revisions": [ { "version": "v1", "updated": "2025-01-06T19:32:46.000Z" } ], "analyses": { "subjects": [ "43A90", "43A85", "58J50", "15A66" ], "keywords": [ "real hyperbolic space", "spinor bundle", "symmetric space", "poisson transform", "uniform estimate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }