{ "id": "2501.01718", "version": "v1", "published": "2025-01-03T09:23:18.000Z", "updated": "2025-01-03T09:23:18.000Z", "title": "Delocalization of One-Dimensional Random Band Matrices", "authors": [ "Horng-Tzer Yau", "Jun Yin" ], "comment": "81 pages, 14 figures", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Consider an $ N \\times N$ Hermitian one-dimensional random band matrix with band width $W > N^{1 / 2 + \\varepsilon} $ for any $ \\varepsilon > 0$. In the bulk of the spectrum and in the large $ N $ limit, we obtain the following results: (i) The semicircle law holds up to the scale $ N^{-1 + \\varepsilon} $ for any $ \\varepsilon > 0 $. (ii) All $ L^2 $- normalized eigenvectors are delocalized, meaning their $ L^\\infty$ norms are simultaneously bounded by $ N^{-\\frac{1}{2} + \\varepsilon} $ with overwhelming probability, for any $ \\varepsilon > 0 $. (iii) Quantum unique ergodicity holds in the sense that the local $ L^2 $ mass of eigenvectors becomes equidistributed with high probability.", "revisions": [ { "version": "v1", "updated": "2025-01-03T09:23:18.000Z" } ], "analyses": { "subjects": [ "15B52", "82B44" ], "keywords": [ "hermitian one-dimensional random band matrix", "delocalization", "quantum unique ergodicity holds", "semicircle law holds", "high probability" ], "note": { "typesetting": "TeX", "pages": 81, "language": "en", "license": "arXiv", "status": "editable" } } }