{ "id": "2412.20335", "version": "v1", "published": "2024-12-29T03:30:18.000Z", "updated": "2024-12-29T03:30:18.000Z", "title": "Flat level sets of Allen-Cahn equation in half-space", "authors": [ "Wenkui Du", "Ling Wang", "Yang Yang" ], "comment": "13 pages, 2 figures", "categories": [ "math.AP" ], "abstract": "We prove a half-space Bernstein theorem for Allen-Cahn equation. More precisely, we show that every solution $u$ of the Allen-Cahn equation in the half-space $\\overline{\\mathbb{R}^n_+}:=\\{(x_1,x_2,\\cdots,x_n)\\in\\mathbb{R}^n:\\,x_1\\geq 0\\}$ with $|u|\\leq 1$, boundary value given by the restriction of a one-dimensional solution on $\\{x_1=0\\}$ and monotone condition $\\partial_{x_n}u>0$ as well as limiting condition $\\lim_{x_n\\to\\pm\\infty}u(x',x_n)=\\pm 1$ must itself be one-dimensional, and the parallel flat level sets and $\\{x_1=0\\}$ intersect at the same fixed angle in $(0, \\frac{\\pi}{2}]$.", "revisions": [ { "version": "v1", "updated": "2024-12-29T03:30:18.000Z" } ], "analyses": { "keywords": [ "allen-cahn equation", "parallel flat level sets", "half-space bernstein theorem", "boundary value", "monotone condition" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }