{ "id": "2412.20315", "version": "v1", "published": "2024-12-29T01:39:16.000Z", "updated": "2024-12-29T01:39:16.000Z", "title": "On the joint distribution of the area and the number of peaks for Bernoulli excursions", "authors": [ "Vladislav Kargin" ], "comment": "21 pages, 1 figure", "journal": "Bernoulli 30(4), 2024, 2700--2720", "doi": "10.3150/23-BEJ1691", "categories": [ "math.PR", "math.CO" ], "abstract": "Let $P_n$ be a random Bernoulli excursion of length $2n$. We show that the area under $P_n$ and the number of peaks of $P_n$ are asymptotically independent. We also show that these statistics have the correlation coefficient asymptotic to $c /\\sqrt{n}$ for large $n$, where $c < 0$, and explicitly compute the coefficient $c$.", "revisions": [ { "version": "v1", "updated": "2024-12-29T01:39:16.000Z" } ], "analyses": { "keywords": [ "joint distribution", "random bernoulli excursion", "correlation coefficient asymptotic", "statistics", "asymptotically independent" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }