{ "id": "2412.18002", "version": "v1", "published": "2024-12-23T21:51:56.000Z", "updated": "2024-12-23T21:51:56.000Z", "title": "Curves on the torus with few intersections", "authors": [ "Igor Balla", "Marek Filakovský", "Bartłomiej Kielak", "Daniel Kráľ", "Niklas Schlomberg" ], "comment": "22 pages", "categories": [ "math.CO", "math.GT" ], "abstract": "Aougab and Gaster [Math. Proc. Cambridge Philos. Soc. 174 (2023), 569--584] proved that any set of simple closed curves on the torus, where any two are non-homotopic and intersect at most $k$ times, has a maximum size of $k+O(\\sqrt{k}\\log k)$. We prove the maximum size of such a set is at most $k+O(1)$ and determine the exact maximum size for all sufficiently large $k$. In particular, we show that the maximum does not exceed $k+4$ when $k$ is large.", "revisions": [ { "version": "v1", "updated": "2024-12-23T21:51:56.000Z" } ], "analyses": { "subjects": [ "57K20", "52A38", "90C05" ], "keywords": [ "intersections", "cambridge philos", "simple closed curves", "non-homotopic", "exact maximum size" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }