{ "id": "2412.14694", "version": "v1", "published": "2024-12-19T09:53:14.000Z", "updated": "2024-12-19T09:53:14.000Z", "title": "A remark on the rigidity of a property characterizing the Fourier transform", "authors": [ "Hermann König", "Vitali Milman" ], "categories": [ "math.FA", "math.CA" ], "abstract": "We show rigidity results for the operator equations T(f.g) = Tf.Tg, T(f*g) = Tf.Tg and T(f.g) = Tf*Tg for bijective operators T acting on sufficently large spaces of smooth functions. Typically a condition like |T(f.g) - Tf.Tg| < a for all f, g with a fixed function a will imply T(f.g) = Tf.Tg. Theorems of Alesker, Artstein-Avidan, Faifman and Milman then yield characterizations (up to diffeomorphisms) of the Fourier transform by mapping products into convolutions and vice-versa on the Schwartz space.", "revisions": [ { "version": "v1", "updated": "2024-12-19T09:53:14.000Z" } ], "analyses": { "subjects": [ "39B42", "26B05", "47A62" ], "keywords": [ "fourier transform", "property characterizing", "schwartz space", "operator equations", "yield characterizations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }