{ "id": "2412.12466", "version": "v1", "published": "2024-12-17T01:58:57.000Z", "updated": "2024-12-17T01:58:57.000Z", "title": "Latin Squares whose transversals share many entries", "authors": [ "Afsane Ghafari", "Ian M. Wanless" ], "categories": [ "math.CO" ], "abstract": "We prove that, for all even $n\\geq10$, there exists a latin square of order $n$ with at least one transversal, yet all transversals coincide on $ \\big\\lfloor n/6 \\big\\rfloor$ entries. These latin squares have at least $ 19 n^2/36 + O(n)$ transversal-free entries. We also prove that for all odd $m\\geq 3$, there exists a latin square of order $n=3m$ divided into nine $m\\times m$ subsquares, where every transversal hits each of these subsquares at least once.", "revisions": [ { "version": "v1", "updated": "2024-12-17T01:58:57.000Z" } ], "analyses": { "subjects": [ "05B15" ], "keywords": [ "latin square", "transversals share", "transversals coincide", "transversal hits" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }