{ "id": "2412.10808", "version": "v1", "published": "2024-12-14T12:13:09.000Z", "updated": "2024-12-14T12:13:09.000Z", "title": "Localized fermions on the triangular lattice with Ising-like interactions", "authors": [ "Lubomíra Regeciová", "Konrad Jerzy Kapcia" ], "comment": "11 pages, 6 figures (8 panels), 71 references; RevTeX class, double-column formatting", "categories": [ "cond-mat.stat-mech", "cond-mat.other", "cond-mat.quant-gas", "cond-mat.str-el", "physics.comp-ph" ], "abstract": "The model of localized fermions on the triangular lattice is analyzed in means of the Monte Carlo simulations in the grand canonical ensemble. The Hamiltonian of the system has a form of the extended Hubbard model (at the atomic limit) with nearest-neighbor Ising-like magnetic $J$ interactions and onsite Coulomb $U$ interactions. The model is investigated for both signs of $J$, arbitrary $U$ interaction and arbitrary chemical potential $\\mu$ (or, equivalently, arbitrary particle concentration $n$). Based on the specific heat capacity and sublattice magnetization analyses, the phase diagrams of the model are determined. For ferromagnetic case ($J<0$), the transition from the ordered phase (which is a standard ferromagnet and can be stable up to $k_{B}T/|J| \\approx 0.61$) is found to be second-order (for sufficiently large temperatures $k_{B}T/|J| \\gtrsim 0.2$) or first-order (for $-10$, the ordered phase occurs in a range of $-1/2-1/2$ is always second-order for any model parameters. The ordered phase for $J>0$ can be stable up to $k_{B}T/|J| \\approx 0.06$.", "revisions": [ { "version": "v1", "updated": "2024-12-14T12:13:09.000Z" } ], "analyses": { "keywords": [ "triangular lattice", "localized fermions", "ordered phase", "ising-like interactions", "sublattice magnetization analyses" ], "note": { "typesetting": "RevTeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }