{ "id": "2412.08659", "version": "v1", "published": "2024-12-01T12:14:42.000Z", "updated": "2024-12-01T12:14:42.000Z", "title": "$s$-almost $t$-intersecting families for vector spaces", "authors": [ "Shuhui Yu", "Lijun Ji" ], "categories": [ "math.CO" ], "abstract": "Let $\\mathcal{F}$ be a family of $k$-dimensional subspaces of an $n$-dimensional vector space. Write $\\mathcal{D}_{\\mathcal{F}}(H;t)=\\{F\\in \\mathcal{F}\\colon \\dim(F\\cap H)\\leq t \\}$ for a subspace $H$. The family $\\mathcal{F}$ is called $s$-almost $t$-intersecting if $|\\mathcal{D}_{\\mathcal{F}}(F;t)|\\leq s$ for each $F\\in \\mathcal{F}$. In this note, we prove that $s$-almost $t$-intersecting families with maximum size are $t$-intersecting.", "revisions": [ { "version": "v1", "updated": "2024-12-01T12:14:42.000Z" } ], "analyses": { "keywords": [ "intersecting families", "dimensional vector space", "dimensional subspaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }