{ "id": "2412.08566", "version": "v2", "published": "2024-12-11T17:32:56.000Z", "updated": "2024-12-17T11:54:22.000Z", "title": "Weighted estimates for Schrödinger--Calderón--Zygmund operators with exponential decay", "authors": [ "Estefanía Dalmasso", "Gabriela R. Lezama", "Marisa Toschi" ], "comment": "16 pages", "categories": [ "math.AP" ], "abstract": "In this work we obtain weighted boundedness results for singular integral operators with kernels exhibiting exponential decay. We also show that the classes of weights are characterized by a suitable maximal operator. Additionally, we study the boundedness of various operators associated with the generalized Schr\\\"odinger operator $-\\Delta + \\mu$, where $\\mu$ is a nonnegative Radon measure in $\\mathbb{R}^d$, for $d\\geq 3$.", "revisions": [ { "version": "v2", "updated": "2024-12-17T11:54:22.000Z" } ], "analyses": { "subjects": [ "42B20", "42B25", "42B35", "35J10" ], "keywords": [ "schrödinger-calderón-zygmund operators", "weighted estimates", "singular integral operators", "kernels exhibiting exponential decay", "suitable maximal operator" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }