{ "id": "2412.06844", "version": "v1", "published": "2024-12-07T18:20:15.000Z", "updated": "2024-12-07T18:20:15.000Z", "title": "Interlacing of zeros from different sequences of Meixner-Pollaczek, Pseudo-Jacobi and Continuous Hahn polynomials", "authors": [ "Aletta Jooste", "Kerstin Jordaan" ], "categories": [ "math.CA" ], "abstract": "In this paper we consider interlacing of the zeros of polynomials from different sequences $\\{p_n\\}$ and $\\{g_n\\}$. In our main result we consider a mixed recurrence equation necessary for existence of a linear term $(x-A)$ so that the $(n+1)$ zeros of $(x-A)g_n(x)$ interlace with the $n$ zeros of $p_n$. We apply our result to Meixner-Pollaczek, Pseudo-Jacobi and Continuous Hahn polynomials to obtain new interlacing results for the zeros of polynomials of the same degree from different polynomial sequences.", "revisions": [ { "version": "v1", "updated": "2024-12-07T18:20:15.000Z" } ], "analyses": { "keywords": [ "continuous hahn polynomials", "meixner-pollaczek", "pseudo-jacobi", "interlacing", "mixed recurrence equation necessary" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }