{ "id": "2412.04632", "version": "v1", "published": "2024-12-05T21:53:56.000Z", "updated": "2024-12-05T21:53:56.000Z", "title": "Smallest totient in a residue class", "authors": [ "Abhishek Jha" ], "categories": [ "math.NT" ], "abstract": "We obtain a totient analogue for Linnik's theorem in arithmetic progressions. Specifically, for any coprime pair of positive integers $(m,a)$ such that $m$ is odd, there exists $n\\le m^{2+o(1)}$ such that $\\varphi(n)\\equiv a\\,\\mathrm{mod}\\,{m}$.", "revisions": [ { "version": "v1", "updated": "2024-12-05T21:53:56.000Z" } ], "analyses": { "subjects": [ "11B50", "11L40", "11N64" ], "keywords": [ "residue class", "smallest totient", "totient analogue", "linniks theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }