{ "id": "2412.02179", "version": "v1", "published": "2024-12-03T05:26:16.000Z", "updated": "2024-12-03T05:26:16.000Z", "title": "Maximization of the first Laplace eigenvalue of a finite graph II", "authors": [ "Takumi Gomyou", "Shin Nayatani" ], "comment": "12 pages", "categories": [ "math.CO" ], "abstract": "Given a length function on the set of edges of a finite graph, the corresponding Fujiwara Laplacian is defined. We consider a problem of maximizing the first nonzero eigenvalue of this graph Laplacian over all choices of edge-length function subject to a certain normalization. In this paper we prove that the supremum of the first nonzero eigenvalue is infinite whenever the graph contains a cycle.", "revisions": [ { "version": "v1", "updated": "2024-12-03T05:26:16.000Z" } ], "analyses": { "subjects": [ "05C62", "05C50" ], "keywords": [ "first laplace eigenvalue", "finite graph", "first nonzero eigenvalue", "maximization", "edge-length function subject" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }