{ "id": "2412.01742", "version": "v1", "published": "2024-12-02T17:36:14.000Z", "updated": "2024-12-02T17:36:14.000Z", "title": "Character of Irreducible Representations Restricted to Finite Order Elements -- An Asymptotic Formula", "authors": [ "Shrawan Kumar", "Dipendra Prasad" ], "comment": "10 pages", "categories": [ "math.RT", "math.AG", "math.GR" ], "abstract": "Let $G$ be a connected reductive group over the complex numbers and let $T\\subset G$ be a maximal torus. For any $t\\in T$ of finite order and any irreducible representation $V(\\lambda)$ of $G$ of highest weight $\\lambda$, we determine the character $ch(t, V(\\lambda))$ by using the Lefschetz Trace Formula due to Atiyah-Singer and explicitly determining the connected components and their normal bundles of the fixed point subvariety $(G/P)^t\\subset G/P$ (for any parabolic subgroup $P$). This together with Wirtinger's theorem gives an asymptotic formula for $ch(t, V(n\\lambda))$ when $n$ goes to infinity.", "revisions": [ { "version": "v1", "updated": "2024-12-02T17:36:14.000Z" } ], "analyses": { "subjects": [ "22E46", "22F30" ], "keywords": [ "finite order elements", "asymptotic formula", "irreducible representation", "lefschetz trace formula", "highest weight" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }