{ "id": "2412.01648", "version": "v1", "published": "2024-12-02T15:58:48.000Z", "updated": "2024-12-02T15:58:48.000Z", "title": "Minimum dilatations of pseudo-Anosov braids", "authors": [ "Chi Cheuk Tsang", "Xiangzhuo Zeng" ], "comment": "82 pages, 13 figures", "categories": [ "math.GT", "math.DS" ], "abstract": "We determine the minimum dilatation $\\delta_n$ among pseudo-Anosov braids with $n$ strands, for large enough values of $n$. This confirms a conjecture of Venzke that $\\lim_{n \\to \\infty} \\delta_n^n = (2+\\sqrt{3})^2 \\approx 13.928$. Together with previous work, this also solves the minimum dilatation problem on the $n$-punctured sphere, for all but $6$ values of $n$.", "revisions": [ { "version": "v1", "updated": "2024-12-02T15:58:48.000Z" } ], "analyses": { "keywords": [ "pseudo-anosov braids", "minimum dilatation problem", "conjecture", "punctured sphere" ], "note": { "typesetting": "TeX", "pages": 82, "language": "en", "license": "arXiv", "status": "editable" } } }