{ "id": "2411.18273", "version": "v1", "published": "2024-11-27T12:07:41.000Z", "updated": "2024-11-27T12:07:41.000Z", "title": "Geometric construction of Schur algebras", "authors": [ "Li Luo", "Zheming Xu", "Yang Yang" ], "comment": "50 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "We provide the geometric construction of a series of generalized Schur algebras of any type via Borel-Moore homologies and equivariant K-groups of generalized Steinberg varieties. As applications, we obtain a Schur algebra analogue of the local geometric Langlands correspondence of any finite type, provide an equivariant K-theoretic realization of quasi-split $\\imath$quantum groups of affine type AIII, and establish a geometric Howe duality for affine ($\\imath$-)quantum groups.", "revisions": [ { "version": "v1", "updated": "2024-11-27T12:07:41.000Z" } ], "analyses": { "keywords": [ "geometric construction", "quantum groups", "local geometric langlands correspondence", "equivariant k-theoretic realization", "geometric howe duality" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable" } } }