{ "id": "2411.17654", "version": "v1", "published": "2024-11-26T18:17:13.000Z", "updated": "2024-11-26T18:17:13.000Z", "title": "Testing compactness of linear operators", "authors": [ "Timo S. Hänninen", "Tuomas V. Oikari" ], "comment": "20 pages", "categories": [ "math.FA", "math.CA" ], "abstract": "Let $(F_i)$ be a sequence of sets in a Banach space $X$. For what sequences does the condition $$ \\limsup_{i\\to \\infty} \\sup_{f_i\\in F_i} \\|Tf_i\\|_Y=0 $$ hold for every Banach space $Y$ and every compact operator $T:X\\to Y$? We answer this question by giving sufficient (and necessary) criteria for such sequences. We illustrate the applicability of the criteria by examples from literature and by characterizing the $L^p\\to L^p$ compactness of dyadic paraproducts on general measure spaces.", "revisions": [ { "version": "v1", "updated": "2024-11-26T18:17:13.000Z" } ], "analyses": { "keywords": [ "linear operators", "testing compactness", "banach space", "general measure spaces", "dyadic paraproducts" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }