{ "id": "2411.15379", "version": "v2", "published": "2024-11-22T23:44:35.000Z", "updated": "2024-12-25T18:49:40.000Z", "title": "Mixed-Fourier-norm spaces and holomorphic functions", "authors": [ "Zhirayr Avetisyan", "Alexey Karapetyants" ], "categories": [ "math.FA" ], "abstract": "We describe a general framework of functional and Fourier analysis on domains with a free action of an Abelian Lie group $G$. Namely, on a domain of the form $G\\times Y$ we introduce the appropriate spaces of distributions and measurable functions, establishing their most basic properties. Then we consider the half-Fourier transform $f(x,y)\\mapsto\\hat f(\\xi,y)$ in the first variable, and discuss the behaviour of function spaces on $G\\times Y$ and $\\hat G\\times Y$ under this transform. We introduce general mixed-Fourier-norm spaces on $G\\times Y$, and the subspaces of holomorphic functions among them, and give an explicit descriptions of the Fourier images of these spaces.", "revisions": [ { "version": "v2", "updated": "2024-12-25T18:49:40.000Z" } ], "analyses": { "subjects": [ "30H20", "46E30", "46E15" ], "keywords": [ "holomorphic functions", "abelian lie group", "general mixed-fourier-norm spaces", "free action", "fourier images" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }