{ "id": "2411.15377", "version": "v1", "published": "2024-11-22T23:35:46.000Z", "updated": "2024-11-22T23:35:46.000Z", "title": "P-adic numbers and kernels", "authors": [ "Simone Franchini" ], "comment": "17 pages, 6 figures", "categories": [ "cond-mat.dis-nn", "cond-mat.stat-mech" ], "abstract": "We discuss the relation between p-adic numbers and kernels in view of a recent large deviation theory for mean-field spin glasses. As an application we show several fundamental properties of numerical bases in kernel language. In particular, we show that the Derrida's Generalized Random Energy Model is a perfectly legitimate (random) numerical base.", "revisions": [ { "version": "v1", "updated": "2024-11-22T23:35:46.000Z" } ], "analyses": { "subjects": [ "11Z05", "G.2.1" ], "keywords": [ "p-adic numbers", "derridas generalized random energy model", "mean-field spin glasses", "large deviation theory", "numerical base" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }