{ "id": "2411.15009", "version": "v1", "published": "2024-11-22T15:34:07.000Z", "updated": "2024-11-22T15:34:07.000Z", "title": "Some sharp $L^2 \\to L^p$ decay estimates for $(2+1)$-dimensional degenerate oscillatory integral operators", "authors": [ "Shaozhen Xu" ], "comment": "This note has been submitted to a journal on August 22nd", "categories": [ "math.CA" ], "abstract": "We investigate $(2+1)-$dimensional oscillatory integral operators characterized by polynomial phase functions. By employing Stein's complex interpolation, we derive sharp $L^2\\to L^p$ decay estimates for these operators.", "revisions": [ { "version": "v1", "updated": "2024-11-22T15:34:07.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "dimensional degenerate oscillatory integral operators", "decay estimates", "dimensional oscillatory integral operators", "polynomial phase functions", "employing steins complex interpolation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }