{ "id": "2411.14195", "version": "v1", "published": "2024-11-21T15:04:58.000Z", "updated": "2024-11-21T15:04:58.000Z", "title": "On $k$-convex hulls", "authors": [ "Davide Ravasini" ], "comment": "7 pages", "categories": [ "math.MG" ], "abstract": "For every integer $k\\geq 2$ and every $R>1$ one can find a dimension $n$ and construct a symmetric convex body $K\\subset\\mathbb{R}^n$ with $\\text{diam} Q_{k-1}(K)\\geq R\\cdot\\text{diam} Q_k(K)$, where $Q_k(K)$ denotes the $k$-convex hull of $K$. The purpose of this short note is to show that this result due to E. Kopeck\\'{a} is impossible to obtain if one additionally requires that all isometric images of $K$ satisfy the same inequality. To this end, we introduce the dual construction to the $k$-convex hull of $K$, which we call $k$-cross approximation.", "revisions": [ { "version": "v1", "updated": "2024-11-21T15:04:58.000Z" } ], "analyses": { "subjects": [ "52A20", "52A23" ], "keywords": [ "convex hull", "symmetric convex body", "isometric images", "short note", "cross approximation" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }