{ "id": "2411.13483", "version": "v1", "published": "2024-11-20T17:34:59.000Z", "updated": "2024-11-20T17:34:59.000Z", "title": "Oriented Trees in Digraphs without Oriented $4$-cycles", "authors": [ "Maya Stein", "Ana Trujillo-Negrete" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "We prove that if $D$ is a digraph of maximum outdegree and indegree at least $k$, and minimum semidegree at least $k/2$ that contains no oriented $4$-cycles, then $D$ contains each oriented tree $T$ with~$k$ arcs. This can be slightly improved if $T$ is either antidirected or an arborescence.", "revisions": [ { "version": "v1", "updated": "2024-11-20T17:34:59.000Z" } ], "analyses": { "subjects": [ "05C05", "05C20", "05C35" ], "keywords": [ "oriented tree", "minimum semidegree", "maximum outdegree" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }