{ "id": "2411.10824", "version": "v1", "published": "2024-11-16T15:29:59.000Z", "updated": "2024-11-16T15:29:59.000Z", "title": "On the degeneracy of the energy levels of Schroedinger and Klein-Gordon equations on Riemannian coverings", "authors": [ "Claudia Maria Chanu", "Giovanni Rastelli" ], "comment": "9 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We study the degeneracy of the energy levels of the Schroedinger equation with Kepler-Coulomb potential and of the Klein-Gordon equation on Riemannian coverings of the Euclidean space and of the Schwarzschild space-time respectively. Degeneracy of energy levels is a consequence of the superintegrability of the system. We see how the degree of degeneracy changes depending on the covering parameter k, the parameter that in space-times can be related with a cosmic string, and show examples of lower degeneracy in correspondence of non integer values of k.", "revisions": [ { "version": "v1", "updated": "2024-11-16T15:29:59.000Z" } ], "analyses": { "keywords": [ "energy levels", "riemannian coverings", "klein-gordon equation", "non integer values", "kepler-coulomb potential" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }