{ "id": "2411.10135", "version": "v1", "published": "2024-11-15T12:14:32.000Z", "updated": "2024-11-15T12:14:32.000Z", "title": "On the rates of pointwise convergence for Bernstein polynomials", "authors": [ "José A. Adell", "Daniel Cárdenas-Morales", "Antonio J. López-Moreno" ], "comment": "7 pages", "categories": [ "math.CA" ], "abstract": "Let $f$ be a real function defined on the interval $[0,1]$ which is constant on $(a,b)\\subset [0,1]$, and let $B_nf$ be its associated $n$th Bernstein polynomial. We prove that, for any $x\\in (a,b)$, $|B_nf(x)-f(x)|$ converges to $0$ as $n\\rightarrow \\infty $ at an exponential rate of decay. Moreover, we show that this property is no longer true at the boundary of $(a,b)$. Finally, an extension to Bernstein-Kantorovich type operators is also provided", "revisions": [ { "version": "v1", "updated": "2024-11-15T12:14:32.000Z" } ], "analyses": { "subjects": [ "41A10", "41A25", "41A36", "60E05" ], "keywords": [ "pointwise convergence", "th bernstein polynomial", "bernstein-kantorovich type operators", "exponential rate", "real function" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }